你好!欢迎来到深圳市品慧电子有限公司!
语言
当前位置:首页 >> 技术中心 >> 电路保护 >> 整流管尖峰吸收电路设计对比,选你所“爱”

整流管尖峰吸收电路设计对比,选你所“爱”


品慧电子讯关于Flyback的次级侧整流二极管的RC尖峰吸收问题,网友的讨论的很激烈,有人主张用RC吸收电路,而有的觉得用RCD吸收电路会效果更好,其整流管尖峰电压可以压得更低,且吸收损耗也更小。当然也有人钟情于ZENER吸收。大家都是“公说公有理,婆说婆有理”,到底基于整流管尖峰吸收电路设计哪个更实用?小编觉得这得看大家自己的需求,选择所认同的。

最近在网上看到很多人都在讨论Flyback的次级侧整流二极管的RC尖峰吸收问题,觉得大家在处理此类尖峰问题上仍过于传统,其实此处用RCD吸收会比用RC吸收效果更好,用RCD吸收,其整流管尖峰电压可以压得更低(合理的参数搭配,可以完全吸收,几乎看不到尖峰电压),而且吸收损耗也更小。

整流二极管电压波形(RC吸收)
整流二极管电压波形(RC吸收)

图 整流二极管电压波形(RC吸收)

整流二极管电压波形(RCD吸收)

图 整流二极管电压波形(RCD吸收)

从这两张仿真图看来,其吸收效果相当,如不考虑二极管开通时高压降,可以认为吸收已经完全。
123下一页>

  • 第一页:RC吸收电路与RCD吸收电路的设计效果对比
  • 第二页:结合实例讲解RCD吸收电路的设计
  • 第三页:详解RC吸收电与RCD吸收电路的特点及其他吸收电路的特点

此处的RCD吸收设计,可以这样认为:为了吸收振荡尖峰,C应该有足够的容值,已便在吸收尖峰能量后,电容上的电压不会太高,为了平衡电容上的能量,电阻R需将存储在电容C中的漏感能量消耗掉,所以理想的参数搭配,是电阻消耗的能量刚好等于漏感尖峰中的能量(此时电容C端电压刚好等于Uin/N+Uo),因为漏感尖峰能量有很多不确定因素,计算法很难凑效,所以下面介绍一种实验方法来设计。

1.选一个大些的电容(如100nF)做电容C,D选取一个够耐压>1.5*(Uin/N+Uo)的超快恢复二极管(如1N4148;

2.可以选一个较小的电阻10K,1W电阻做吸收的R;

3.逐渐加大负载,并观察电容C端电压与整流管尖峰电压;

如C上电压纹波大于平均值的20%,需加大C值;

如满载时,C端电压高于Uin/N+Uo太多(20%以上,根据整流管耐压而定),说明吸收太弱,需减小电阻R;

如满载时,C上电压低于或等于Uin/N+Uo,说明吸收太强,需加大电阻R;

如满载时C上电压略高于Uin/N+Uo(5%~10%,根据整流管耐压而定),可视为设计参数合理;

在不同输入电压下,再验证参数是否合理,最终选取合适的参数。

我们再看看两种吸收电路对应的吸收损耗问题(以Flyback为例):

采用RC吸收:C上的电压在初级MOS开通后到稳态时的电压为Vo+Ui/N,(Vo为输出电压,Ui输入电压,N为变压器初次级匝比),因为我们设计的RC的时间参数远小于开关周期,可以认为在一个吸收周期内,RC充放电能到稳态,所以每个开关周期,其吸收损耗的能量为:次级漏感尖峰能量+RC稳态充放电能量,近似为RC充放电能量=C*(Vo+Ui/N)^2(R上消耗能量,每个周期充一次放一次),所以RC吸收消耗的能量为 fsw*C*(Vo+Ui/N)^2,以DC300V输入,20V输出,变压器匝比为5,开关频率为100K,吸收电容为2.2nF为例,其损耗的能量为 2.2N*(20+300/5)^2*100K=1.4w。

采用RCD吸收,因为采用RCD吸收,其吸收能量包括两部分,一部分是电容C上的DC能量,一部分就是漏感能量转换到C上的尖峰能量,因为漏感非常小,其峰值电流由不可能太大,所以能量也非常有限,相对来讲,只考虑R消耗的直流能量就好了,以上面同样的参数,C上的直流电压为Vo+Ui/N=80V,电阻R取47K,其能量消耗为0.14W,相比上面的1.4W,“低碳”效果非凡。
<上一页123下一页>

  • 第一页:RC吸收电路与RCD吸收电路的设计效果对比
  • 第二页:结合实例讲解RCD吸收电路的设计
  • 第三页:详解RC吸收电与RCD吸收电路的特点及其他吸收电路的特点

再谈谈这两种吸收电路的特点及其他吸收电路:

RC吸收:吸收尖峰的同时也将变压器输出的方波能量吸收,吸收效率低,损耗大,但电路简单,吸收周期与开关频率一致,可以用在低待机功耗电路中。

RCD吸收:适合所有应用RC吸收漏感尖峰的地方(包括正激、反激、全桥、半桥等拓扑)吸收效率较RC高,但是存在一直消耗电容(一般比较大)储存的能量的情况,不适合应用在低待机功耗电路中(包括初级MOS管的漏感吸收);

再讨论一下ZENER吸收:可以应用于初级MOS漏感尖峰吸收,次级整流管电压尖峰吸收,还可应用于低待机功耗电路,吸收效率最高,成本高,但ZENER稳压参数变化较大,需仔细设计。

整流管的反向恢复只会出现在连续工作模式中,断续工作模式的电源拓扑,都不会存在整流管的反向恢复问题;

整流管的电容效应及次级杂散电容与次级漏感会引起振荡,这种振荡在整流管大的dv/dt(变压器连整流管端电压变化率)和二极管反向恢复电流(连续模式)影响下,表现为变压器输出端+输出电压通过次级漏感与整流管等杂散电容的谐振,从而引起整流管反向电压尖峰。

通俗来讲,二极管的反向恢复指正在导通的二极管从导通状态转换为反向截至状态的一个动态过程,这里有两个先决条件:二极管在反向截至之前要有一定正向电流(电流大小影响到反向恢复的最大峰值电流及恢复时间,本来已截至的状态不在此列,故只有连续模式才存在反向恢复问题);为满足二极管快速进入截至状态,会有一个反向电压加在二极管两端(这个反向电压的大小也影响已知二极管的反向恢复电流及恢复时间)。所以看有无反向恢复问题,可以对比其是否具备这两个条件。

准谐振电路的好处是将断续模式整流二极管最大的端变化电压N*Uo+Uo变成N*Uo-Uo,减小了其整流二极管在初级MOS管开通时的电压变化率,从而减少了漏感振荡的激励源,降低其产生的振荡尖峰,如幅值不影响整流管耐压安全,完全可以省去RC等吸收电路。

这里简约说一下,不管是RCD吸收还是ZVS吸收,其N*Vo/Vclamp(N为变压器初次级匝比,Vo为输出电压,Vclamp为嵌位电压)越小,吸收的损耗就越小(这里不考虑RCD吸收中的D二极管反向恢复期间回灌的能量),如果等于0,那损耗就是0.5*Lleakage*Ip^2*fsw,这个是极限值,也就是说实际的吸收损耗肯定会大于这个数,要想降低吸收损耗,在满足MOS耐压和EMI要求下,提高吸收点电压就可以降低吸收损耗。

用户评论

发评论送积分,参与就有奖励!

发表评论

评论内容:发表评论不能请不要超过250字;发表评论请自觉遵守互联网相关政策法规。

深圳市品慧电子有限公司