你好!欢迎来到深圳市品慧电子有限公司!
语言
当前位置:品慧电子 >> 搜索 >> 与“结温”相关的内容

[电源管理]低损耗、高结温!基本半导体混合碳化硅分立器件性能优势介绍

【导读】IGBT分立器件一般由IGBT和续流二极管(FWD)构成,续流二极管按材料可分为硅材料和碳化硅材料,按照器件结构可分为PIN二极管和肖特基势垒二极管(SBD)。材料与结构两两组合就形成了4种结果:硅PIN二极管、碳化硅 PIN二极管、硅肖特基二极管、碳化硅肖特基二极管。在本篇文章中我们将重点阐述碳化硅肖特基二极管作为续流二极管的混合碳化硅分立器件(后文简称为混管)的特性与优点。 目前市面上主流的IGBT产品其续流二极管为快恢复二极管(FRD),是上文提到的硅PIN二极管的一种,因此混管使用的碳化硅SBD与硅FRD在材料和结构上

[电源管理]OBC PFC车规功率器件结温波动与功率循环寿命分析

【导读】随着新能源汽车(xEV)在乘用车渗透率的逐步提升,车载充电机(OBC)作为电网与车载电池之间的单向充电或双向补能的车载电源设备,也得到了非常广泛的应用。相比车载主驱电控逆变器, 电源类OBC产品复杂度高,如何实现其高功率密度、高可靠性、高效率、高性价比等核心指标的优化与平衡,一直是OBC不断技术迭代与产品革新的方向。 在上述OBC与可靠性的背景下,针对车规功率器件在PFC电路中的结温(Tvj)波动与功率循环(PC)寿命的热点应用话题,我们将以系列微信文章的形式,结合英飞凌最新的技术与产品,与大家一起分享。 功率器件可靠性

[电源管理]一文搞懂IGBT的损耗与结温计算

品慧电子讯与大多数功率半导体相比,IGBT 通常需要更复杂的一组计算来确定芯片温度。这是因为大多数 IGBT 都采用一体式封装,同一封装中同时包含 IGBT 和二极管芯片。为了知道每个芯片的温度,有必要知道每个芯片的功耗、频率、θ 和交互作用系数。还需要知道每个器件的 θ 及其交互作用的 psi 值。 本应用笔记将简单说明如何测量功耗并计算二极管和 IGBT 芯片的温升。 损耗组成部分 根据电路拓扑和工作条件,两个芯片之间的功率损耗可能会有很大差异。IGBT 的损耗可以分解为导通损耗和开关(开通和关断)损耗,而二极管损耗包括导通和关断

[互连技术]红外热成像仪对放大器的芯片结温的仿真测试

品慧电子讯:随着 GaN 功率放大器向小型化、大功率发展,其热耗不断增加,散热问题已成为制约功率器件性能提升的重要因素。金刚石热导率高达 2000 W/(m·K),是一种极具竞争力的新型散热材料,可用作大功率器件的封装载片。摘要随着 GaN功率放大器向小型化、大功率发展,其热耗不断增加,散热问题已成为制约功率器件性能提升的重要因素。金刚石热导率高达 2000W/(m·K),是一种极具竞争力的新型散热材料,可用作大功率器件的封装载片。采用不同载片材料对一款热耗为 53 W 的 GaN 功率放大器进行封装。分别采用有限元仿真及红外热成像仪

[贴片电容]功率半导体冷知识:IGBT短路结温和次数

?作者:陈子颖 ,来源: 英飞凌工业半导体IGBT短路特性英飞凌IGBT模块开关状态下最高工作结温一般是150度,而IGBT7短时过载情况下的最高工作结温可达175度。那么IGBT模块一辈子都可以生活在这样的舒适区享受人生吗?不!模块出生后2年内必然要走上社会。在装上整机踏上社会的一刻,往往要经历短路试验这一关。IGBT的底气不足或系统保护不给力,就会夭折。IGBT在十年甚至几十年的开关高压大电流的生涯中,被短路是难免的,不幸可能是来自系统和外部干扰,甚至是人为操作失误。IGBT是允许短路的,完全

[电路保护]功率半导体冷知识:IGBT短路结温和次数

品慧电子讯英飞凌IGBT模块开关状态下最高工作结温一般是150度,而IGBT7短时过载情况下的最高工作结温可达175度。那么IGBT模块一辈子都可以生活在这样的舒适区享受人生吗? IGBT短路特性 英飞凌IGBT模块开关状态下最高工作结温一般是150度,而IGBT7短时过载情况下的最高工作结温可达175度。那么IGBT模块一辈子都可以生活在这样的舒适区享受人生吗? 不!模块出生后2年内必然要走上社会。在装上整机踏上社会的一刻,往往要经历短路试验这一关。IGBT的底气不足或系统保护不给力,就会夭折。 IGBT在十年甚至几十年的开关高压大电流的生涯中,被

[电源管理]直流开关电源结温的直接测量法

设计人员经常需要测量直流开关电源的结温。这在温度试验箱中非常难于实现,因为热像仪不仅数据不准而且可能在高温环境下损坏,而外部温度传感器又很难固定在小尺寸封装上。本文演示了一种利用二极管电压与温度之间关系的直流电压读取方法,它使用电源正常指示 (PG) 引脚上的MOSFET 体二极管直接读出温度,为工程师提供了一种测量IC结温的实用方法。背景信息在最大指定负载和环境温度下测量结温,对许多应用都很重要。本文将以带PG体二极管的MPS的MPQ4572为例进行说明,图2显示了其DC模块框图。图 1:MPQ4572 中的 PG N沟道 MOSFET 体二极管

[通用技术]智能功率模块IPM的结温评估

本文详细叙述了实际使用时对IPM模块的各种结温的计算和测试方法,从直接红外测试法,内埋热敏测试,壳温的测试方法,都进行详细说明,以指导技术人员通过测量模块自带的Tntc的温度估算或测试IPM变频模块的结温,然后利用开发样机测试结果对实际产品进行结温估算标定,评估IPM模块运行的可靠性。引言IPM模块是电机驱动变频器的最重要的功率器件, 近些年随着IPM模块的小型化使模块Rth(j-c)变大,从而对温升带来了越来越多的挑战;虽然芯片技术的进步会降低器件损耗,能一定程度缓解小型化的温升问题,但不断成熟的控制技术和成本控制也需要更

[通用技术]解读数据手册中的热参数和IC结温

工程师在转换数据手册中的热阻参数,并做出有意义的设计决策时常常面临很多困惑。这篇入门文章将帮助现在的硬件工程师了解如何解读数据手册中的热参数,包括是否选择 theta 与 psi、如何计算其值;更重要的是,如何更实用地将这些值应用于设计。本文还将介绍应用环境温度之间的关系,以及它们与 PCB 温度或 IC 结温的比较。 最后,我们将讨论功耗如何随温度变化,以及如何利用此特性来实现冷却运行、成本优化的解决方案。电热类比在热量和电量之间进行一定的类比,可以帮助我们更轻松地理解热量。表 1 和表 2对电量和热量及其材料常数进行

[传感器]PN结温度传感器优缺点

温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 金属膨胀原理设计的传感器 金属在环境温度变化后会产生一个相应的延伸,因此传感器可以以不同方式对这种反应进行信号转换。 双金属片式传感器 双金属片由两片不同膨胀系数的金属贴在一起而组成,随着温度变化,材料A比另外一种金属膨胀程度要高,引起金属片弯曲。弯曲的曲率可以转换成一个输出

[发光二极管]LED结温产生原因是什么?降低LED结温的途径有哪些?

LED结温产生原因是什么?降低LED结温的途径有哪些? 1、什么是LED的结温?LED的基本结构是一个半导体的P—N结。实验指出,当电流流过LED元件时,P—N结的温度将上升,严格意义上说,就把P—N结区的温度定义为LED的结温。通常由于元件芯片均具有很小的尺寸,因此我们也可把LED芯片的温度视之为结温。2、产生LED结温的原因有哪些?在LED工作时,可存在以下五种情况促使结温不同程度的上升:a、元件不良的电极结构,视窗层衬底或结区的材料以及导电银胶等均存在一定的电阻值,这些电阻相互垒加,构成LED元件的串联电阻。当电流流过P—N结时,同

[发光二极管]LED结温及其降低方法

本文介绍了LED结温及其产生的原因,最后给出了LED结温的降低方法:1、什么是LED的结温?LED的基本结构是一个半导体的P—N结。实验指出,当电流流过LED元件时,P—N结的温度将上升,严格意义上说,就把P—N结区的温度定义为LED的结温。通常由于元件芯片均具有很小的尺寸,因此我们也可把LED芯片的温度视之为结温。2、产生LED结温的原因有哪些?在LED工作时,可存在以下五种情况促使结温不同程度的上升:A、元件不良的电极结构,视窗层衬底或结区的材料以及导电银胶等均存在一定的电阻值,这些电阻相互垒加,构成

[发光二极管]结温保护的LED驱动设计方案

引言LED寿命长、效率高是有前提的,即适宜的工作条件。其中影响寿命和发光效率的主要因素是LED的工作结温。从主流LED厂家提供的测试数据表明,LED的发光效率与结温几乎成反比,寿命随着结温升高近乎以指数规律降低。因此,将结温控制在一定范围是确保LED寿命和发光效率的关键。而将结温控制在一定范围的手段除散热措施外,将结温纳入驱动电源的控制参数是十分必要的。1 LED结温的检测LED的结温是指PN结的温度,实际测量LED的结温比较困难,但是可以根据LED的温度特性间接测量。LED的伏安特性和普通的二极管相似。用于白光照明的

[电路保护]在恶劣环境下选择IGBT,提升结温是关键

在轨道交通中,大功率交流传动电力机动车,例如火车和地铁内部有两个功率模块,分别是主牵引变流器和辅助变流器。在功率最高、电压最大、工作条件非常恶劣的情况下,如何选择IGBT? 主牵引变流器为牵引机车提供动力,功率最高、电压最大,工作条件最为严酷。辅助变流器为其他非动力电流供电,如空调、车灯、后备电源等,电压、功率相对较低,工作条件也相对较好。主牵引变流器需要3.3千伏或6.5千伏高压模块,辅助变流器所需的电压则相对比较低,1.7千伏模块就能满足。它们均需要选用牵引级IGBT模块,因为机车工作环境非常恶劣。牵引级IGBT

[生产测试]经验分享:如何测量LED灯条灯泡结温

LED灯条灯把传统钨丝球泡灯制造技术与LED新兴技术相结合,使用玻璃泡充气技术,把LED灯条密闭在玻璃球泡内,并在内填充混合气体,使其起到散热作用,以达到降低LED结温,减少光衰,延长寿命的目的。但是工作状态下LED灯条的结温是影响各项性能指标的主要因素,所以如何测量LED灯条灯泡结温也是一个棘手的问题。用LED灯条做成的普泡形灯泡,不需加透镜既能实现360度全角度的光源,使人有回归传统白炽灯的感觉。LED灯条灯具有多项应用优势,在市场上刮起了一股不小的旋风,正快速地被用户所接受。LED灯条灯把传统钨丝球泡灯制造技术与LED新兴

[通用技术]LED结温及其降低方法

中心议题: LED结温及其降低方法解决方案: 减少LED本身的热阻 减少LED与二次散热机构安装介面之间的热阻 控制额定输入功率1、什么是LED的结温?LED的基本结构是一个LED照明的P—N结。实验指出,当电流流过LED元件时,P—N结的温度将上升,严格意义上说,就把P—N结区的温度定义为LED的结温。通常由于元件芯片均具有很小的尺寸,因此我们也可把LED芯片的温度视之为结温。2、产生LED结温的原因有哪些?在LED工作时,可存在以下五种情况促使结温不同程度的上升:A、元件不良的电极结构,视窗层衬底或结区的材料以及

[生产测试]LED结温及其降低方法

中心议题: LED结温及其降低方法解决方案: 减少LED本身的热阻 减少LED与二次散热机构安装介面之间的热阻 控制额定输入功率1、什么是LED的结温?LED的基本结构是一个LED照明的P—N结。实验指出,当电流流过LED元件时,P—N结的温度将上升,严格意义上说,就把P—N结区的温度定义为LED的结温。通常由于元件芯片均具有很小的尺寸,因此我们也可把LED芯片的温度视之为结温。2、产生LED结温的原因有哪些?在LED工作时,可存在以下五种情况促使结温不同程度的上升:A、元件不良的电极结构,视窗层衬底或结区的材料以及

[生产测试]LED结温及热阻测试

中心议题: 电压法测量LED结温的原理 测试仪器性能介绍LED应用于照明除了节能外,长寿命也是其十分重要的优势。目前由于LED热性能原因,LED及其灯具不能达到理想的使用寿命;LED在工作状态时的结温直接关系到其寿命和光效;热阻则直接影响LED在同等使用条件下LED的结温;LED灯具的导热系统设计是否合理也直接影响灯具的寿命。因此功率型LED及其灯具的热性能测试,对于LED的生产和应用研发都有十分直接的意义。电压法测量LED结温的原理  LED热性能的测试首先要测试LED的结温,即工作状态下LED的芯片的温度。关于LED芯片温度的测试,理论上有

[光电显示]罗姆展出结温可达250℃的功率模块和适用各种调光的LED照明驱动IC

罗姆在最近参加的展会上推出了一系列创新产品,其中包括满足手机副屏个性化要求的微间距点阵LED驱动IC、采用COB方式的平板电视LED灯条、SiC肖特基二极管、高耐热智能功率模块以及适用于各种调光应用的LED照明驱动IC。罗姆展出的针对手机应用开发的微间距LED点阵及驱动IC,对于翻盖手机的副屏来说,如下图显示的一样,微间距LED点阵可以增添副屏的个性化。据罗姆工作人员介绍,LED点阵驱动IC BD26503GUL内置13种自动亮灯功能,最多和分别控制119个点的亮度。内置两个面的RAM,可顺利显示动画,IC占位面积很小,只有3.6mmX3.6mm,高度为0.55

[光电显示]简捷高效控制LED结温的LPR恒温控制技术

品慧电子讯:雷烁照明推出的LED系列球泡灯采用LPR恒温控制技术,简捷高效地控制LED的结点温度,确保PN结的结点温度不高于60℃,进而最大限度地降低了由于温度过高而产生的光衰,最终解决了限制LED寿命的关键性问题。该新产品寿命可达5万小时以上,实为替代家用球泡灯的首选产品。LED照明领域的节能先行者雷烁照明(LESO)近期宣布推出采用LPR恒温控制技术的LED系列球泡灯。长寿命的白光LED球泡具有高光效、低光衰、高节能、低成本的优势,进一步加速推进LED室内照明代替白炽灯的进程。雷烁照明推出的LED系列球泡灯采用LPR恒温控制技术,简