你好!欢迎来到深圳市品慧电子有限公司!
语言
当前位置:首页 >> 技术中心 >> 电源管理 >> 提供更低成本的完全自保护的MOSFET功率器件

提供更低成本的完全自保护的MOSFET功率器件


中心议题:
  • 短路故障
  • 过温故障
  • 过温保护
解决方案:
  • 完全自保护MOSFET功率器件解决方案

汽车电子系统中使用的功率器件必须能抵受极为严峻环境的考验:它们必须能承受关闭瞬流和负载切断电源故障引起的高压毛刺;若环境工作温度超过120℃,器件结温则将随之而来升高;线束中的众多连接器位于方便组装和维修的位置,这可能造成器件电气连接的间断。由于新的负载需要的功率越来越大,所以即使在正常的条件下工作,器件承受的压力也明显加大。

为了提高系统可靠性并降低保修成本,设计人员在功率器件中加入故障保护电路,以免器件发生故障,避免对电子系统造成高代价的损害。这通常利用外部传感器、分立电路和软件来实现,但是在更多情况下,设计人员使用完全自保护的MOSFET功率器件来完成。随着技术的发展,MOSFET功率器件能够以更低的系统成本提供优异的故障保护。

图1显示了完全自保护MOSFET的一般拓扑结构。这些器件常见的其他特性包括状态指示、数字输入、差分输入和过压及欠压切断。高端配置包括片上电荷泵功能。但是,大多数器件都具备三个电路模块,即电流限制、温度限制和漏-源过压箝制,为器件提供大部分的保护。

图1:完全自保护MOSFET的一般拓扑结构。

短路故障

最常见也最麻烦的故障可能是短路。这类故障有以下几种形式:负载间的短路、开关间的短路或电源接地的短路。而且,这些短路器件启动和关闭时都会发生。由于短路故障通常是间歇性,即使在很短时间中就存在多种形式,使问题更为棘手。例如,在器件之间发生短路而MOSFET关闭的情况下,电流通过短路向MOSFET周围分流。

然而,如果短路是间歇性、负载为电感的情况下,电流中断将在MOSFET上产生一个反激(flyback)电压。根据短路持续的时间和电阻,负载电感中的峰值电流可能会高于正常工作时的峰值电流。因此,器件比预期吸收更多的能量,而且多个间歇性短路事件的快速连续发生会导致峰值结温急剧升高,从而对器件产生潜在的破坏性。

过温故障

其他故障包括器件引脚的静电放电(ESD)、线路瞬流或电感负载开关引起的过压,还有就是过热。过温故障通常由其他故障引起,如短路便会快速增加器件的功耗,也可能由极端环境条件或热路径异常引起,如器件散热器和电路板之间的焊料失效。在诸多故障模式下,自保护MOSFET产品的控制电路以一种安全模式来检测并控制器件工作,使器件在故障修复后可以恢复正常功能。

由于有源元件(MOSFET门极氧化物接口除外)已与门极输入引脚连接,因此漏极与源极之间短路时,此引脚的泄漏电流(50-100uA)比标准MOSFET泄漏电流的测量值( 《 50nA)大三个数量级。泄漏电流的增加通常不会对门极驱动电路产生影响,但是,门极驱动电路必须能够在电流限制或热关机故障情况下驱动足够大的电流。在过流和过温故障的情况下,器件一般将功率MOSFET门极节点电压下拉至接近饱和的工作门限电压或零伏,以完全关闭器件。

通常门极输入引脚和功率MOSFET门极节点之间存在一个串联电阻Rs,所以吸收的输入电流大约等于(Vin-Vgate)/Rs。器件通常在结温超过预设限制温度时关闭。在这种情况下,Vgate=0伏,所以在过温故障时必须产生一个等于Vin/Rs的最小源极电流。否则,内部门极下拉电路将无法关闭功率场效应管,使其结温可能达到产生破坏作用的水平。
  
过温保护


通常过温保护是通过对主功率MOSFET有源区域的温敏器件(一般为二极管)设置偏压来实现的。若这些元件侦测到芯片结温超过过温设定值时,电路将主功率MOSFET门极拉至地,关闭该器件。一些器件内置滞后电路,使器件可以在芯片结温稍微下降(一般下降10℃-20℃)后返回导通状态。图2显示安森美的NIF5022N器件短路电流和时间响应之间的关系。在其它器件中,若检测到过温故障情况,电流将锁存,而输入引脚必须固定对锁存进行复位。

相关文章

    用户评论

    发评论送积分,参与就有奖励!

    发表评论

    评论内容:发表评论不能请不要超过250字;发表评论请自觉遵守互联网相关政策法规。

    深圳市品慧电子有限公司